
Week 7 - Wednesday

 What did we talk about last time?
 Started TCP programming: HTTP

 HTTP requests and responses start with header lines
 Each ends with CRLF (\r\n), with an extra CRLF after all headers
 Each \r\nwould simply look like a newline, but we show them below for clarity

 The most common client request is GET
 It must have a line like the following:

 path is the file being requested
 version is the HTTP version, usually 1.0, 1.1, or 2

GET /path HTTP/version\r\n

GET /index.html HTTP/1.0\r\n
Accept: text/html\r\n
Accept-Encoding: gzip, deflate, br\r\n
Accept-Language: en-US,en;q=0.5\r\n
User-Agent: Mozilla/5.0\r\n
\r\n

 In order to test clients and servers, it's useful to have a program that allows a text-only TCP
connection

 netcat is a common one
 Installed as executable nc on the Ubuntu machines in the lab

 The first line below connects to example.com on port 80
 The next three lines are header lines typed by the user
 Lines marked in green are responses from the server

$ nc –v example.com 80
GET / HTTP/1.1
Host: example.com
Connection: close

HTTP/1.1 200 OK
…

 Once you've created a client socket and successfully connected to a server using the
address information from the last class, you can send this data in code by creating a string
 snprintf() is also a good choice for arbitrarily formatted data

size_t length = 500;
char buffer[length + 1];
memset (buffer, 0, sizeof (buffer));

// Copy first line and shrink remaining length
strncpy (buffer, "GET /web/index.html HTTP/1.0\r\n", length);
length = 500 - strlen (buffer);

// Concatenate each additional header line
strncat (buffer, "Accept: text/html\r\n\r\n", length);
length = 500 - strlen (buffer);
write (socketfd, buffer, strlen (buffer)); // Send over socket

 After sending that data, the response will look something like the following:
HTTP/1.1 200 OK\r\n
Content-Type: text/html; charset=UTF-8\r\n
Date: Sun, 28 Feb 2021 22:20:28 GMT\r\n
Content-Length: 1256\r\n
Connection: close\r\n
\r\n
<!doctype html>\n
<html>\n
<head>\n

<title>Example Domain</title>\n
</head>\n
<body>\n
<div>\n

<h1>Example Domain</h1>\n
<p>This domain is for use in illustrative examples in documents.</p>\n

</div>\n
</body>\n
</html>\n

 HTTP/1.0 was one and done
 HTTP/1.1 allows for persistent connections, so

that multiple requests can be made over the
same TCP connection

 HTML that requires multiple requests is below
 The sequence diagram showing the

communication is on the right

<html>
<head>
<script src="http://zoo.com/library.js" />
<script src="script.js" />
</head>
<body></body>
</html>

 A successful response to an HTTP request usually starts with:

 But there are many other common status codes:

HTTP/1.1 200 OK

Status Text Explanation

200 OK Request was successful

301 Moved Permanently File has been moved to a new location

400 Bad Request The HTTP request had incorrect syntax

401 Unauthorized The request requires user authentication

403 Forbidden Access to the resource is not allowed

404 Not Found No file was found based on Request-URI

500 Internal Server Error The server had an unexpected error or fault

503 Service Unavailable The server is unavailable or not accepting new requests

 Sending headers is easy because you know how much data you've got
 Receiving is harder, requiring a fixed length buffer with what you hope is plenty of room

#define HEADER_MAX 8192

// Allocate a buffer to handle initial responses up to 8 KB
char buffer[HEADER_MAX + 1];
ssize_t bytes = read (socketfd, buffer, HEADER_MAX);
assert (bytes > 0);

// If we can't find the CRLFCRLF, the header was too long
char *eoh = strnstr (buffer, "\r\n\r\n", HEADER_MAX);
if (eoh == NULL)

{
fprintf (stderr, "Header exceeds 8 KB maximum\n");
close (socketfd);
return EXIT_FAILURE;

}
// Replace the CRLF CRLF with \0 to split the header and body
eoh[2] = '\0';

 After reading headers on the previous slides, we can look through each one
 One critical thing is to find the length of the content, so we can allocate enough space for it

char *line = buffer;
char *eol = strstr (line, "\r\n");
size_t body_length = 0;
while (eol != NULL) // While there are more CRLFs
{

eol[0] = '\0'; // Null-terminate each line
printf ("HEADER LINE: %s\n", line);

// Find content length
if (! strncmp (line, "Content-Length: ", 16))

{
char *len = strchr (line, ' ') + 1;
content_length = strtol (len, NULL, 10);

}

line = eol + 2; // Move to the next line
eol = strstr (line, "\r\n");

}

 On the previous slide, we found the length of the content
 It's possible that the content was so small we read it into our 8 KB buffer
 Otherwise, we'll need to allocate more space

int length = strlen(eoh + 4);
char *content = malloc(length + 1);
strcpy(content, eoh + 4);
if (content_length > length) // if false, all data received
{
// Increase the content size and read additional data
// Bytes needed is the Content-Length minus bytes already received
content = realloc (content, content_length);
bytes = read (socketfd, content + length, content_length - length);

}

 As with TCP, it's hard to give meaningful examples of code
without using some application-level protocol

 For TCP, we did HTTP
 For UDP, we'll do DNS
 DNS, the Domain Name System, is the distributed network

of servers that translates domain names into IP addresses

 ICANN maintains the root structure of DNS
 Below the root are top level domains (TLDs)

like com, edu, org, net and a lot of weird
newish ones like engineering and pink

 Different companies manage each TLD
 Domains can be looked up from the TLD that

houses it
 edu knows where otterbein.edu can be found
 Dots separate each entity

 It’s a kind of little endian ordering where the
leftmost entity is the most specific, growing
more general to the right

 DNS is case insensitive

.

edu

otterbein

mit

com

microsoft

amazon

org

code

 Queries can be iterative:
 Ask the root, get a response for the TLD
 Ask the TLD for the domain you want
 Get a response closer to what you're

looking for and repeat
 Shown on the right

 Queries can also be recursive:
 Ask a name server, it handles everything

 To make the system efficient, servers
cache domains that have been asked
for recently

 There's a time-to-live value that says
how long a cached domain should be
kept

 DNS information is sent in resource records, which have the following
form:
 NAME is the human-readable domain name
 TYPE is gives the kind of record

▪ A is an IP address
▪ CNAME is a canonical name
▪ NS is an authoritative name server

 CLASS is what protocol, often IN for Internet
 TTL is time-to-live in a cache
 RDLENGTH is the length of the data in the record
 RDATA is the data

 NAME and RDATA are variable length, and all other fields are 16 bits

NAME

TYPE

CLASS

TTL

RDLENGTH

RDATA

 Like HTTP, DNS is a
request-response protocol

 Unlike HTTP, DNS uses
UDP and messages aren't
as human readable

 DNS messages contain
five fields: header,
question, answer,
authority, and additional
 Headers start with a

random ID to keep
messages straight

 Example request to resolve
example.com:

Field Data in Hex Meaning

Header

1234 XID=0x1234

0100 OPCODE=SQUERY

0001 0000 0000 0000 1 question field

Question
0765 7861 6d70 6c65 0363 6f6d 00 QNAME=EXAMPLE.COM

0001 0001 QCLASS=IN, QTYPE=A

Answer

Authority

Additional

Character 7 e x a m p l e 3 c o m 0

Hex 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00

Note:
Instead of dots, QNAME gives the

number of characters for each name part

 Here's a
reasonable
response to the
request from the
previous slide

 Don't worry
about the
OPCODE, it's a
set of bits laid
out according to
DNS rules

 QNAME uses a
special code to
indicate that the
name is 12 bytes
into this
response (to
avoid repetition)

Field Data in Hex Meaning

Header

1234 XID=0x1234

8180 OPCODE=SQUERY, RESPONSE, RA

0001 0001 0000 0000 1 question and 1 answer

Question
0765 7861 6d70 6c65 0363 6f6d 00 QNAME=EXAMPLE.COM

0001 0001 QCLASS=IN, QTYPE=A

Answer

c00c QNAME=EXAMPLE.COM [compressed]

0001 QTYPE=A

0001 QCLASS=IN

0000 e949 TTL = 0xe949 = 59721

04 RDLENGTH = 4

0x5db8d822 [93.184.216.34] RDATA

Authority

Additional

 Finish UDP socket programming
 Broadcasting

 Keep working on Project 2
 Read sections 4.6 and 4.7

	COMP 3400
	Last time
	Questions?
	Project 2
	TCP Socket Programming
	Sample request
	netcat
	Doing it in code
	Sample response
	Persistent connections
	HTTP headers
	Receiving headers
	Processing headers
	Getting the content
	UDP Socket Programming
	UDP socket programming
	DNS
	DNS queries
	DNS resource record structure
	DNS requests
	DNS responses
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

